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Random walks of a quantum particle on a circle 
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Abstract. When the quantum planar rotor is put on a lattice its dynamics can be approxi- 
mated by random walks on a circle. This allows for fast and accurate Monte Carlo 
simulations to determine the topological charge of different configurations of the system 
and thereby the B dependence of the lowest energy levels. 

1. Introduction 

Non-Abelian gauge theories like QCD have configuration spaces of highly non-trivial 
topologies due to local gauge invariance which identifies points in this abstract space. 
When these theories are quantised one is led to introduce an unknown angle 6 [l]. 
Physical quantities like the vacuum energy and particle masses will in general depend 
on it. Like most other properties of these theories, this dependence cannot in general 
be established using ordinary perturbative methods. Recently attempts have been made 
to use numerical methods instead, based on Monte Carlo simulations of the correspond- 
ing lattice gauge theories [2]. These calculations are time consuming and only very 
small lattices have been considered. 

In order to get a better understanding of these effects and also the numerical 
problems involved, we want to consider the simplest possible system where the 6 
dependence is most directly accessible. This is the planar rotor, or a free particle on 
a circle [3]. Although this is almost a trivial system it can be used to model the 
spectrum of certain molecules [4] and the motion of electrons in a circular SQUID [SI. 

In the next section we will use the path integral formalism to relate the topological 
angle f3 to the winding number Q of the closed trajectories of the particle moving in 
imaginary time on a circle. One can easily find all energy levels and correlation 
functions of interest. For numerical simulations one must discretise the time variable. 
This is done in 9 3, where the particle is allowed to move on a finite lattice. Even in 
this case one can obtain an exact result for the ground-state energy by approximating 
the quantum paths with random walks. In this approximation, which is exact when 
the lattice spacing goes to zero, one can also very naturally simulate the quantised 
motion of the particle. The path integrals will just be sums over sufficiently large 
numbers of ordinary random walks. This allows for a fast and most direct method to 
calculate all quantum mechanical expectation values. We first obtain accurate results 
for the ground-state energy by this method. From the two-point correlation function 
we also find the energy of the first excited state as a function of the angle 8. This 
corresponds to the mass gap in lattice gauge theories. In the final section we discuss 
the obtained results, and also how this particular Monte Carlo algorithm can be useful 
in other situations. 

0305-4470/88/071633 + 15$02.50 @ 1988 IOP Publishing Ltd 1633 



1634 N Fjelds@ et a1 

2. Quantum mechanics of the planar rotor 

A particle on a circle with angular variable 4 has the Lagrangian L = id2 in appropriate 
units. The conjugate momentum is p+ = 6 and the Hamiltonian H = ip’, . When the 
motion is quantised, the momentum becomes the operator p+ = (l / i)(d/d$) with 
normalised eigenfunctions t,bk( 4)  = ( 1 / 2 ~ ) ” ~  exp(ik4). The constant k is determined 
by the boundary conditions. If the eigenfunctions are required to be strictly periodic, 
i.e. $k(f$+27) = $k(4), then k = n =0,  *I, *2,. , . . The corresponding energy eigen- 
values are E ,  = i n 2 .  This is the standard textbook result for a planar quantum rotor. 

One can also consider the more general case when one only requires the probability 
density p ( 4 )  = l$(4)I2 to be periodic. This makes it possible to introduce a phase 8 
such that 

444 +2.ir) = exp(-W$(+).  (2.1) 

The angular momentum now takes the values k = n - 8 / 2 v  and the corresponding 
eigenfunctions are $,,(+) = ( 1 / 2 1 ~ ) ” ~  exp[i(n - 8/2v)#1]. With the same Hamiltonian 
as above, the energy eigenvalues are then E , , ( @ )  = i ( n  - 8/21~)’. The lowest ones are 
shown in figure 1. In particular, we see that the ground-state wavefunction is $e = $,,( 4 )  
with energy E8 = 0 2 / 8 r 2  when O S  8 < IT. It changes abruptly into $e = with 
energy E,  =  IT - for IT s 8   IT. 

0 f n  n 2n 
e 

Figure 1. Lowest energy levels of the planar rotor. n = 2  (A), 1 (B), 0 (C), - 1  (D). 

It is convenient to have periodic wavefunctions $ ( 4  + 2 ~ )  = $ ( 4 )  instead of (2.1). 
This can be achieved by an ordinary gauge transformation which takes the momentum 
into the new operator p+ = ( l / i ) (d /d4 )  - 8/27.  The Hamiltonian can now be written 
as the differential operator 

(2.2) 
with the periodic eigenfunctions $,,(4) = ( 1 / 2 ~ ) ” ~  exp(in4). Alternatively, we could 
have started with the Lagrangian La = fdz+  (8/27)8,  with the canonical momentum 
p4 = 4 + 8/27. From He = dp4 -La then follows the Hamiltonian (2.2) since now 
p4 = ( l / N d / d 4 ) *  

He = -$(d/d4 - i 8 / 2 1 ~ ) ~  
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We will now investigate the motion of the quantum particle. It is most conveniently 
done using the path integral formalism for imaginary time T = it .  In particular, we will 
consider the propagation of the particle from the state )40) at time T = 0 to a state I&) 
at time T = T. Dividing the time lapse T into N equal intervals of length a + 0 such 
that Nu = T, one can write the transition amplitude 

Zd T) = (4+p(- w?)l40) (2.3) 

as a finite product of infinitesimal amplitudes. They are all of the same form and will 
be 

when inserting a complete set of energy eigenstates. Now using the Poisson summation 
formula 

X 

f ( n ) =  1 d x f ( x ) e x p ( 2 ~ i q x )  
n=--2 q=-x -x 

and performing the resulting Gaussian integral one finds [6] 

(42lexp(-aH,)I 41) 

(2.4) 

- - 1 f exp( 
(27ra)”* 4=-x 

Each term in this infinite sum is the exponential of the discretised Lagrangian Lo 
corresponding to the particle winding q times around the circle when going from 41 
to 42. These angles are compact variables, i.e. defined modulo 2 ~ .  

The full transition amplitude can now be written as 

when we drop an irrelevant phase factor exp[i( 8/2T)(+N - 40)]. Here 

is the amplitude for the particle to move from do to 4N with winding number Q = 
The integration measure is DC#J = (27ra)-”’IlN-’ t = i  d 4 , .  

local winding number q1 to form a non-compact variable 

9,. 

We can combine the integration over the compact angle 4, with the corresponding 

ii = 4 i + 2 T  i q,. 
j =  1 

The amplitude (2.7) now simplifies to 

with &,,= do. It is the amplitude for a free particle to move from do to J N  = 40+2.rrQ 
in imaginary time T = Nu. Integrating, one finds the well known result 

1 z -  ex~[ - (1 /2T) (4 ,+2 .rrQ-4~)~1  (2.9) - (2.rrT)”’ 
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which would also have followed more directly from integration of the Schrodinger 
equation. 

We will only ned to consider the special case 4N = r # ~ ~  where the particle moves a 
whole number of periods. From (2.6) and (2.9) we then get 

1 
z, = f exp( -25r2Q2/ T + iQ6) 

(25rT)”’ Q=-= 

8 25ri 
03 - - 

1 - - 
(25rT)”’ (277’ T ) 

as found by Schulman [7]. Here e3 is the Jacobi theta function 

X 

0 3 ( z ,  t )  = C exp(i5rtn2+25rinz). 
n=--m 

Now using the symmetry formula [8] 

e,( z, t )  = ( - i t ) -”2 exp( -i5rz2/ r ) @ ,  (f.?) 
the transition amplitude (2.10) simplifies to 

1 ”  
25r n = - x  

Z , = -  exp(-E,,(O)T) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

with E,(  e )  = f( n - 0/25r)’ being the energy levels of the planar rotor. In this form we 
recognise this amplitude as the ground-state to ground-state transition amplitude 
2, = ( e (  T)le(O)) as also follows directly from (2.3) when 4 N  = do. 

The two-point correlation function C @ ( T )  = (el4(7)4(0)le) can easily be calculated. 
Using 4 ( ~ )  = exp(H,T)4(0) exp(-H,T) and inserting a complete set of energy eigen- 
states, one has 

When O s  e <  5r the ground state l e )=  IO). Then ( n l + l e ) = i / n  for n ZO, (01416)= 5r 

and we find 

(2.14) 

A similar expression is obtained when 5r S 0 < 25r. If we choose to parametrise the 
circle with #I E [-T, 5 r )  instead of 4 E [0,25r) as here, one will find the disconnected 
piece I(o/4(e)12 to give zero. 

In the functional formulation of this problem the correlation function is 

with the action 
r r  

(2.15) 

(2.16) 
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as used previously. Going through the same steps as before we now find that we can 
write 

(2.17) 

where the correlation function C Q ( T )  = ( 4 ( ~ ) 4 ( 0 ) ) Q  can be expressed as a functionally 
integrated average over the paths with total winding number Q in analogy with the 
result in (2.6). The amplitude ZQ can therefore be interpreted as the probability to 
find a path with winding number Q in this functional approach. 

All quantum mechanical averages can be written as in (2.17). In particular, the 
expectation value of the kinetic energy E = -id2 will be the ground-state energy 

1 "  
2 0  Q=-= 

Ea=- EQZQ exp(iQ0) (2.18) 

when the averages are taken over paths with T + m. In order to get a finite result in 
the limit a + 0, one must regularise this result, since the velocity 4 is not finite. This 
can be done as explained by Feynman and Hibbs [9] by taking the product d2 at two 
different times separated by a distance a which is then taken to zero: 

We will explicitly make use of this formula in § 4 where the quantum problem is 
investigated in a Monte Carlo simulation. 

It is possible to calculate E, directly. Inverting (2.18) one can write it as a Fourier 
transform of E&!. In the limit T+ m one finds from the partition function (2.13) that 

d 
Ea = --In 2,. d T  

(2.20) 

With this in the Fourier integral one obtains 

in the same limit. With ZQ from (2.9) where now c $ ~  = 4 N  we get immediately 

E 1 2.rr2Q2 
' -2T T 2  * 

(2.22) 

The dependence on the winding number for large times T is very slow since Q appears 
only in the term of order l /T2.  Except for a difference in sign, the functional form 
of E ,  is quite similar to what Bhanot et a1 [ 2 ]  found in a Monte Carlo simulation of 
four-dimensional SU( 2) lattice gauge theory. 

3. Quantum paths as random walks 

A method to compute Za numerically presents itself through (2.9), where the amplitude 
2, can be interpreted as the probability for a Brownian particle with diffusion constant 
D = to move from do to 4 N  in time T. Again we choose 4N = 40. This Brownian 
motion can be approximated by a symmetric random walk with the same probability 
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i to jump a distance A = Ja to the left or to the right. Obviously, this analogy should 
be expected since with imaginary time the Schrodinger equation for zero potential is 
just the diffusion equation. The velocity at each step from the point di to bi+, will 
simply be the angular difference A divided by the lattice constant a. This approximation 
leaves the action constant equal to S = $ N  and all paths have the same weight. 

One can easily extend this correspondence between quantum motion and random 
walks to also include non-zero potentials [ 101. In fact, it forms the basis of the so-called 
random walk Monte Carlo algorithm which can be used to obtain non-perturbative 
numerical results for much more complex quantum systems like liquid helium [ 111 
and lattice gauge theories [12]. A quantum particle on a circle is probably the simplest 
non-trivial example where the essence of this powerful method can be most easily 
demonstrated. 

We can now actually calculate the ground-state energy of the quantum particle 
moving on a finite lattice of length T = Nu in the imaginary time direction. At every 
step in this direction the particle will move with equal probability a step A = v’a to the 
right or to the left on the circle which is partitioned into M intervals such that MA = 2n. 
Of all the 2 N  random walks of N steps there are 

P”(  N ) 
$(N-m)  (3.1) 

with a net displacement mA along the circle. These particular walks will, in analogy 
with (2.19), have an average energy 

but now with - $ ~ - ~ 1  = A .  Looking at the N - 1 interior sites of the time lattice, we 
see that at B sites there is a change of direction in the random walk, i.e. a break. At 
the remaining S = N - 1 - B sites it continues in the same direction. We can then 
simplify (3.2) to 

A? 
2a2(N-1) 

E = -  [N-1-2(B),]. (3.3) 

In order to calculate the average ( B ) ,  we need an expression for the number of paths 
with a definite number of breaks, ending a distance mA from the starting point. Thus 
we will be able to give each term contributing to E,  the appropriate weight. 

In order to find this combinatorial factor we will follow Jacobson and Schulman 
[ 131 in their investigation of the one-dimensional Dirac equation, referring to the path 
drawn in figure 2. Here R = i( N + m )  is the total number of steps to the right, and 
L = f (  N - m )  is the corresponding number of steps to the left. On the tilted frame 
encompassing the path in the figure we project on the lower right side the sections of 
the path having steps only to the right. The steps to the left are projected on the lower 
left side. We see that for paths starting with a right step and ending with a left step, 
the number B of breaks will be odd. There will be a total number of $( B - 1) + 1 left 
breaks and i ( B  - 1) right breaks. The number of paths satisfying this requirement is 
obtained by distributing the left breaks minus the compulsory last one among the steps 
to the right minus the first compulsory one, i.e. we distribute +( B - 1) left breaks among 
R - 1 right steps. Independently, we distribute the right breaks among the left steps, 
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@ 
Figure 2. Paths generated by a random walk with N = 16 steps, B = 7 breaks and R = 9 
right steps which is a contribution to PRL in the text. 

omitting the last compulsory step. Thus the number of paths of this kind will be 

Following this reasoning we find the same number of paths with compulsory first left 
and last right steps, i.e. PLR = PRL. 

Next we look at paths starting out and coming in with right steps. The total number 
of breaks will now be even, with 4B breaks both to the left and to the right. Due to 
the compulsory first and last steps we find the total numbers of such paths to be 

Similarly we have for paths starting and coming in with left steps 

R - 1  L - 1  
' . . = ( i B - l )  ( 4B ) 

These expressions yield the total number of paths PE,B with N steps in the time 
direction, a net displacement of m spatial steps and with B breaks. When B is odd, 
it will be P:,B = 2PRL, and for B even P:, = PRR + PLL.  These results can now be 
combined into 

where [ k ]  denotes the greatest integer less than or equal to k. Summing over all breaks 
B we must have for consistency that 

N-1 c p:,B = p," 
B = O  

as is verified in the appendix. 

(3.5) 
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The expectation value 
4 N - I  

which is needed in (3.3) can now be calculateL. After some further manipulations of 
the binomial coefficients which are found in the appendix we find 

( B), = f (  N - m2/ N ) .  (3.7) 

Inserting this result into (3 .3)  the average energy is found to be 

A2 m2 
Em = 2a2( N - 1 )  ( -z) (3.8) 

for those paths with a net displacement of mh.  
In the special case with closed trajectories the displacement is given by the winding 

number Q as mA = 2n-Q. We can now take the continuum limit a + 0, N + CO for finite 
T = Nu. From (3 .1 )  we can then easily find the probability to have a closed trajectory 
with winding number Q. It is 2-"PE + (2/ n-N)'" exp[ - ( ~ T Q ) ~ / ~ N A ~ ]  which is 
essentially 2, given in (2.9) as expected. Similarly, in the same limit, the energy (3.8) 
is just the continuum result (2.22) as is easily seen using A2 = a. 

We can now find the @-dependent ground-state energy of the discretised problem 
by inserting (3.8) and (3.1) into (2.18) with m = MQ. A typical result is shown in figure 
3 when the circle is divided into M = 14 segments, and with walks of N = 100 steps 
in the time direction. For comparison we have also shown the exact result in the 
continuum limit a + 0 .  When 8 is close to 0 or 27r the different sums converge fast 
and we find energies close to the exact continuum results. For this choice of parameters 
we get E o e o =  lop4 as compared to the exact result, which is zero. On the other hand, 
when 8 is close to T the results are not so accurate. Then all the oscillatory terms in 
Z ,  are found to add up to a small quantity. This behaviour can be understood since 
the system experiences level crossing at 8 = n-. Hence the ground state is more difficult 
to isolate in this region. Similarly the numerator in (2.18) also becomes small for the 

e 
Figure 3. Ground-state energy of the discretised planar rotor. The broken curve gives the 
continuum result. 
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same reason. The ground-state energy being the ratio of these two functions therefore 
requires higher accuracy in this region. 

This solution for a finite lattice approaches the continuum limit more closely as M 
decreases. However, then the cancellation mentioned above becomes more severe, 
until for M = 2 the energy E, becomes indefinite at 8 = T. Then both numerator and 
denominator become exactly zero as shown in the appendix. Expanding the numerator 
and denominator around 0 = T one can isolate the leading term (4/a)(  8 - T)-’  in the 
ratio showing that E,-rr is in fact infinite in this special case. 

4. Random walk Monte Carlo simulations 

In  lattice versions of non-Abelian gauge theories one cannot calculate the &dependent 
vacuum energies as we have for the planar rotor. The only way to find this non- 
perturbative dependence seems to be by Monte Carlo simulations. This has been done 
by Bhanot et a1 [2] using the Metropolis algorithm to investigate four-dimensional 
SU(2) gauge theories. One is then faced with an additional problem of how to relate 
this 6J dependence on a finite lattice to what we would have in the continuum version 
of the theory. It is therefore of interest to see how our results for the planar rotor on 
a lattice can be obtained from Monte Carlo simulations and  how well these results 
compare with the exact results in the continuum limit. 

The action (2.16) has an  imaginary term and  thus cannot be used right away in a 
Monte Carlo simulation based on the Metropolis or  heat bath algorithms. This problem 
can easily be avoided by first calculating expectation values (A( 4 ) ) Q  from configur- 
ations of the planar rotor corresponding to definite topological charge or  winding 
number Q and then summing all these contributions with a complex weight ZQ exp(iQ0) 
as in (2.17). The amplitude 2, is proportional to the probability of finding a configur- 
ation in imaginary time. Both ZQ and ( A ( 4 ) ) Q  are straightforward to find from such 
simulations. 

For this problem a faster and more natural algorithm follows from the random 
walk approximation to the quantum motion of the particle as discussed in the previous 
section. Since the action is the same for all such walks with the same number of steps 
in the time direction, an  average of a quantity A ( 4 )  over walks with winding number 
Q will then simply be 

where the index r denotes different walks in this topological class. The quantum 
amplitude ZQ is then proportional to the number of walks in the class, i.e. 

From here follows Z,  directly from (2.6). The physical expectation value (A( 4) ) ,  is 
now obtained from 

in analogy with (2.17) for the correlation function. 
The energy of the ground state is found from this Monte Carlo simulation using 

(2.19) for the kinetic energy. In figure 4 we show the result based on 100 000 random 
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e 
Figure 4. Results for the ground-state energy for the discretised planar rotor obtained from 
a simulation based on 100 000 random walks, each with N = 100 steps and M = 14 intervals 
on the circle. CPU time is 2 min on a ND-570 minicomputer. 

walks generated on a lattice with N = 100 points and  with the circle divided into 
M = 14 segments. Here we have given error bars based on the variations in the 
measurements grouped into ten runs each with 10 000 random walks. The calculated 
points and  corresponding error bars are seen to fall rather smoothly along the theoretical 
curve. This is to be expected since they are all obtained from the same set of generated 
random walks. The small discrepancy between these simulated values and the exact 
result calculated in the previous section is due to fluctuations. It decreases when the 
generated number of random walks is made larger, and is zero when this number 
becomes infinite. 

When larger values of M are used for the same lattice size N, the maximal attainable 
value for the winding number Q becomes smaller. This results in good statistics for 
the measured observables and  good determination of 2,. Even for 8 near 7r the 
simulation converges quickly. The calculation in 0 3 shows however that the limit of 
convergence is relatively far from the continuum result, i.e. the finite-size effect is more 
pronounced. On the other hand, if M is taken to be smaller, the approach to the 
continuum limit is faster since the lattice spacing a and  thereby the time T grows. 
This serves to isolate the continuum ground state better. But the uncertainties in the 
measurements are larger, especially for higher values of Q. For 8 in the region close 
to 7r the different sums over Q exhibit large cancellations as discussed in the previous 
section. Thus the error accumulates, producing larger fluctuations in this region of 8. 

In principle it is possible to obtain higher energy levels from this simulation by 
calculating accurately higher correlation functions. The first excited state can be 
isolated in the two-point correlation function (2.14) in the limit where the point 
separation T + CC. It is here convenient to parametrise the circle by 4 E [ -7, 7 r )  so that 
the disconnected piece is zero. Then the energy difference LEe = E , (  8 )  - E,( 8 )  is given 
by 

d 
d.r A E H  = --In C e ( ~ ) I r d x  (4.4) 

and seen to equal LEo =$( 1 - 0/7r) in the interval Os 0 < 7r. 
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We show in figure 5 results for the correlation function for three values of 0 obtained 
from simulations on the same lattice. One notices that these points for large values 
values of the argument T fall approximately on straight lines as they should. In addition 
they should also meet at T = 0 at the point CO( 7 = 0) = fx'. The reason why they fail 
to d o  so is due to the finite size of the lattice; they will approach this continuum value 
when a -f 0. 

The energy difference A E ,  can now be found from (4.4), and the results are shown 
in figure 6 .  The points should fall on the straight line A E o  = :( 1 - e /  x )  as they are 
roughly seen to d o  when 0 s  0 < T. One can easily make the agreement with the 

2 -  

m 
b - c - 

- 2  - 

- 

- 4  
0 8 1 6  2 4  3 2  4 0  

N 

Figure 5. Logarithm of the two-point correlation function for three values of 0 where the 
point separation is given by the number N of lattice units ( 0  = r ( A ) ,  n/2 ( B ) ,  0 ( C ) ) .  The 
measured values are  based on a simulation with 100 000 random walks on  the same lattice 
as  in figure 4, now requiring a CPU time of approximately 9 min. 

0.8 

0.6 

0.4 

G= 
a 

0 . 2  

0 

-0.2 
iT 2R 5 .  0 

e 
Figure 6.  Energy gap  obtained from the correlation function in figure 5 .  The full curve is 
the expected result for finite time separation, while the broken line is the exact result in 
the continuum limit. 
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continuum results better by using a larger lattice which allows for larger separation T. 

As long as T is finite, there will also be contributions to the correlation function 
C,(T) from higher states as seen from (2.14). Taking into account the next higher state 
with quantum number n = - 1  one finds 

(4.5) 

AE, = f [ l  - ( @ / r )  t a n h ( 8 ~ / 2 7 ~ ) ]  (4.6) 

with 8 in the same interval as before. This corrected energy difference is seen to 
approach the exact result in the limit T+CO.  It is also shown in figure 6 and is seen 
to agree with the simulated points. 

The difficulties in isolating the energy gap are more pronounced for small values 
of 8. On the other hand, when 8 approaches T we get larger fluctuations due  to 
uncertainties in ZQ and poor statistics in CQ for large Q values. Both of these difficulties 
can be eliminated by adding a periodic potential V ( 4 )  to the problem, lifting the 
degeneracies. Expectation values ( A (  4 ) ) ;  are then again related to ( A ( 4 ) ) :  exactly 
as for zero potential [6]. Choosing a potential V ( 4 )  =A(1 -cos 4)  with A small we 
can then use the same Monte Carlo algorithm based on random walks. The only 
difference will be that now the walker feels the potential which must be included in 
the averages. Adding the potential to the action (2.16) we see that it will give the 
modified expectation value 

C,(T) = 2 exp( -$T) cosh( 87/27~).  

Obtaining the energy difference from the slope formula (4.4) one finds 

where the right-hand side is the average taken over free random walks [lo]. It can 
again be obtained from simulations using (4.1). 

The simulated results for the ground-state energy E, and the energy gap PE, for 
A = 0.4 are shown in figures 7 and 8. For the same number of random walks generated 

e 
Figure 7. Ground-state energy of the discretised planar rotor in a non-zero potential with 
A = 0.4. These results are based on the same lattice and from the same number of random 
walks as before. 
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e 
Figure 8. Energy gap for a planar rotor in a non-zero potential with A = 0.4 on the same 
lattice and from the same number of random walks as previously. 

previously and the same lattice we find better agreement with the continuum results, 
which are also shown in the figures. These are obtained from directly diagonalising 
the Hamiltonian in a finite basis of plane waves exp(in4). For 8 = 0 the energy levels 
are directly given by the eigenvalues of the Mathieu equation. 

When the coupling constant A becomes large it is obvious that most of the generated 
random walks will give small or negligible contributions to the averages (4.7) because 
of the exponential of the potential. This particular Monte Carlo algorithm is then no 
longer very efficient but can easily be improved by generating so-called guided random 
walks [lo,  121 which try to keep the particle away from the classically inaccessible 
regions. One can use this modified algorithm to investigate the instantons which appear 
in this model when the coupling constant A becomes sufficiently large [14]. 

5. Conclusion 

The planar rotor is the simplest quantum model which is topologically non-trivial and 
which exhibits a 8 dependence of the same kind as is expected in non-Abelian gauge 
theories like QCD. In the lattice version of this simple system, the topological charge 
is given directly by the winding number of the particle on the discretised circle. On 
the other hand, for a gauge theory on a lattice it is not so obvious how to define a 
topological charge which also can be taken consistently into the continuum limit. 

I t  would be of interest to find out if the concept of paths in the topologically 
non-trivial configuration spaces of gauge theories could be used to get a better under- 
standing of the appearance of topological quantum numbers in some of these theories. 
If that were the case, then it would be very natural to try to extract this information 
and thereby also the 8 dependence of physical quantities from Monte Carlo simulations 
based on the random walk algorithm. For the planar rotor we have found it to be 
pretty near ideal. 
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Appendix 

The average ( B ) ,  in (3 .6)  can be obtained from the addition theorem of binomial 
coefficients [ 1 5 ] .  It can be derived from the identity 

( a + b ) " ( c + d ) " =  (:) ( y )  arbn-rcydm-y 
r = O  s = O  

when setting a = c and b = d on both sides and identifying products of powers aPbY.  
One finds 

P = O  ' ( n ) ( k m p ) = ( n : m )  P 

In addition we will need sums which can be obtained from taking the derivative with 
respect to a on both sides of ( A l ) .  Again setting a = c and b = d we then get 

p = l  i: '(i) ( k m p ) ' n ( n : ! L 1 )  

when using ( A 2 ) .  More complicated sums can be obtained by taking higher derivatives. 
Changing variables in the summation formula ( A 2 )  it can be shown to give 

( n ; f m ) ( n " m ) = (  2; ) 
p = o  n -2m 

p = l  ' ( p ) ( p - l ) = ( n - : : - l ) .  
n - f m  n + t m  

Using these two sums it is straightforward to verify the normalisation ( 3 . 5 ) .  

then derive that 
The expectation value (3 .6 )  follows from ( A 3 )  after changing variables. One can 

2 n - 1  
= ( n  - f m )  ( n - i m )  

( n  ;tm) ( n  ; fm)  
p = 1  ' P( n - f m  ) (  n + f m  p - l ) = ( n - f m ) ( ; ; 7 ) .  
p = l  

In  actual calculations n = $ N  - 1 .  We have here assumed N even. Putting all this 
together we can finally write down the desired result ( 3 . 8 ) .  

When M = 2 we have m = 2Q and the energy becomes 

E -  Q - 2 a 2 (  A2 N - l )  (I%). 

When this expression is used in ( 2 . 1 8 )  at the special value 8 = T the denominator will 
be the partition function 

N I 2  

z,=2 Q = I  1 ( - l ) Q  (4 :  Q )  + (4") * 

The numerator will take the similar form 

N 
( - 1 ) Q +  (-410) 

4Q2 A2 N I 2  

2 a 2 ( N - 1 )  [2z, ('-7) ( $ N - Q )  ($")I' 
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We can now show that both of these expressions equal zero. Actually we have that 

for k = 2 ,4 , .  . . , N - 2. This can be shown from the identity 

( Y )  X q - n  

2 n  

x-"( l  - x y n  = c ( - 1 ) q  
q = o  

and operating on both sides p times with D E  xdldx. After some rearrangements one 
can compare terms on both sides and find 

for p = 0 , 2 , .  . . , 2 n  -2.  With n =fN,  q = Q and p = O  this just gives Z, =0,  as can be 
seen from (A9). When p = 2 we now see that the expression in (A10) also is zero. 

For all partitions M > 2 of the circle there is no such singularity for f3 = 7~ on the 
finite lattice. The divergence of E , = ,  can be isolated by a Taylor expansion. One will 
then also need (A13) for the higher powers of p .  
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